Glimpses on functionals with general growth

Lars Diening¹ Bianca Stroffolini² Anna Verde²

¹Universität München, Germany ²Università Federico II, Napoli

Minicourse, Mathematical Institute Oxford, October 2015

Outline

Introduction

- The Model
- Main Theorem

2 Main steps of the proof

- Useful Ingredients
- Uhlenbeck trick
- Excess decay estimate

3 Further directions

- Asymptotically convex problems
- Harmonic type approximations

Main steps of the proof

Further directions

The Model

Our model case is:

$$F(u)=\int_{\Omega}f(Du)dx$$

- $\Omega \subset \mathbb{R}^n$ bounded open set, $u : \Omega \to \mathbb{R}^N$
- *f* satisfies some growth condition:

$$|z|^p \leq f(z) \leq c(1+|z|)^p$$

• f is convex and C^2 .

A function $u \in W^{1,p}_{loc}(\Omega, \mathbb{R}^N)$ (Sobolev space) is a local minimizer for *F* if

 $F(u, spt\eta) \leq F(u + \eta, spt\eta) \quad \forall \eta \in C_0^1(\Omega, \mathbb{R}^N).$

Framework: David Hilbert's 19th problem

Does every lagrangian partial differential equation of a regular variational problem have the property of exclusively admitting analytic integrals?

Whether "regular" variational problems admit only analytic solutions? *F* is called a regular variational integral if $f \in C^2(\mathbb{R}^{n \times N})$ and $\nu |B|^2 \leq D^2 f(A)[B,B] \leq L|B|^2 \ 0 < \nu \leq L$

Theorem

 $(W^{2,2}_{loc}$ -regularity) Any minimizer $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is in fact $W^{2,2}_{loc}$.

In the special case that *f* is quadratic a bootstrap argument gives $u \in C^{\infty}$! Campanato shows $u \in W^{2,2+\delta}$, with $\delta = \delta(n, \frac{L}{\nu})$ Kristensen and Melcher proved a dimension free value for δ .

De Giorgi -Nash-Moser theorem

Consider a uniformly elliptic equation (N=1) with measurable coefficients:

 $-div(a(x)\nabla u) = 0$

then $u \in C^{0,\alpha}_{loc}(\Omega)$ for some $\alpha = \alpha(n, \frac{L}{\nu})$. Nash proved the result for parabolic equations. Moser proved Harnack's inequality.

$$\lim_{\frac{L}{\nu}\to\infty}\alpha=\mathbf{0}$$

Theorem

Let $u \in W^{1,p}(\Omega)$ be a weak solution of the equation diva(x, u, Du) = 0 under the monotonicity and growth conditions of p-growth:

$$|a(x,v,z)| \leq L(1+|z|^{p-1}), \, \nu |z|^p - L \leq \langle a(x,v,z), z \rangle$$

then
$$u \in C^{0,\alpha}_{loc}(\Omega)$$
 for some $\alpha = \alpha(n, p, \frac{L}{\nu})$

For functionals: Without any differentiability assumption, the result holds true

Frehse

Giaquinta Giusti (hole filling technique of Widman) Di Benedetto Trudinger proved Harnack for functions in De Giorgi classes.

- Giaquinta, Giusti;
- Ivert;
- Manfredi;
- Lewis;
- Di Benedetto;
- Tolksdorff.

The vectorial case

A well known result of Uraltseva and K. Uhlenbeck (77) states that the $C^{1,\alpha}$ -regularity holds for local minimizers if the integrand function is of the type

f(|z|)

for a convex function *f* of *p*-growth, with $p \ge 2$.

Known results

- Uraltseva, Uhlenbeck '77
- Giaquinta-Modica '86
- Acerbi-Fusco '89 1 < p < 2

What happens if the power function t^{p} is replaced by a general convex function $\phi(t)$? (general growth)

Orlicz-Sobolev

- $L^{\phi}: f \in L^{\phi}$ iff there exists K > 0 such that $\int \phi(\frac{|f|}{K}) dx < \infty$
- $W^{1,\phi}: f \in W^{1,\phi}$ iff $f, Df \in L^{\phi}$.

Known results

- Marcellini '89-'96 general growth
- Lieberman : scalar case '91 ; vectorial case '93
- Mingione-Siepe '99
- Esposito-Mingione '00 nearly linear growth
- Fuchs-Mingione '00
- Marcellini-Papi '06
- Bildhauer Fuchs

Marcellini's, Marcellini-Papi's approach: Euler system

$$u \in W^{1,\infty}, A \in C^1 \Longrightarrow u \in C^{1,\alpha}$$

without excess decay estimate! Excess functional:

$$\Phi(x_0,r) = \int_{B_r} |V(Du) - V(Du)_{x_0,r}|^2 dx$$

where $V(z) = |z|^{\frac{p-2}{2}} z$.

Question

What are suitable assumptions on ϕ that guarantee everywhere $C^{1,\alpha}$ -regularity for local minimizers?

ϕ *N*-function

- $\phi(0) = 0$
- ϕ' right continuous, non-decreasing
- $\phi'(0) = 0, \, \phi'(t) > 0$ for t > 0, and $\lim_{t \to \infty} \phi'(t) = \infty$.
- $\phi \in C^1([0,\infty)) \cap C^2((0,\infty))$
- H1. $\phi'(t) \sim t \phi''(t)$ uniformly in t > 0

• H2. Hölder continuity for ϕ''

$$|\phi^{\prime\prime}(oldsymbol{s}+t)-\phi^{\prime\prime}(t)|\leq c\,\phi^{\prime\prime}(t)\left(rac{|oldsymbol{s}|}{t}
ight)^eta~~eta>0$$

for all t > 0 and $s \in \mathbb{R}$ with $|s| < \frac{1}{2}t$.

• H1.
$$\Longrightarrow \Delta_2(\phi, \phi^*) < \infty$$
 (ϕ^* is the conjugate)

Δ_2 condition

$$\phi \in \Delta_2 \Leftrightarrow \exists c_1 > 0 : \phi(2t) \leq c_1 \phi(t)$$

Examples

•
$$\phi(t) = t^p \quad \forall p > 1$$

•
$$\phi(t) = t^{\rho} \log^{\alpha}(e+t)$$

•
$$\phi(t) = t^{\rho} \log \log(e+t)$$

Main steps of the proof

Further directions

Main Theorem

Main Theorem

Let
$$u\in W^{1,\phi}_{\mathit{loc}}(\Omega,\mathbb{R}^n)$$
 local minimizer for

 $\int_{\Omega}\phi(|Du|)dx$

∜

with ϕ like before

"excess decay estimate"

$$\int_{B_{\rho}} |V(Du) - (V(Du))_{\rho}|^2 \leq c(\frac{\rho}{R})^{\alpha} \int_{B_{R}} |V(Du) - (V(Du))_{R}|^2 \forall \rho < R$$

∜

Du locally Hölder continuous

Main steps of the proof

Further directions

Main Theorem

Nonlinear quantities

$$\mathcal{A}(\mathcal{Q}) = \phi'(|\mathcal{Q}|) rac{\mathcal{Q}}{|\mathcal{Q}|} \quad \mathcal{V}(\mathcal{Q}) = \psi'(|\mathcal{Q}|) rac{\mathcal{Q}}{|\mathcal{Q}|} \quad \psi'(t) = \sqrt{\phi'(t)t}$$

The nonlinearity of the problem is inserted in V !

 $|A(Q) \cdot Q \sim |V(Q)|^2 \sim \phi(|Q|)$

 $\left(\mathsf{A}(\mathsf{P}) - \mathsf{A}(\mathsf{Q})
ight) \cdot \left(\mathsf{P} - \mathsf{Q}
ight) \sim \left| \mathsf{V}(\mathsf{P}) - \mathsf{V}(\mathsf{Q})
ight|^2$

uniformly in $P, Q \in \mathbb{R}^{N \times n}$. For $\lambda > 0$ shifted function :

$$\phi'_{\lambda}(t) = rac{\phi'(\lambda+t)t}{\lambda+t}$$

 ϕ_{λ} inherits all properties of ϕ uniformly in λ

1. Poincaré and Caccioppoli in the Orlicz-Sobolev setting;

╢

Gehring-type result

 2. Bernstein-Uhlenbeck trick: φ(|Du|) is a subsolution of a uniformly elliptic equation

₩

weak Harnack inequality

3. Excess decay estimate

↓

conclusion using the integral characterization of Campanato spaces.

Useful Ingredients

Reverse Hölder: $\exists q_1 > 1$ such that $\forall q \in [1, q_1]$

$$(\oint_{B} |V(Du)|^{2q} dx)^{\frac{1}{2q}} \le c(\oint_{2B} |V(Du)|^{2} dx)^{\frac{1}{2}}$$

and Reverse Hölder for the oscillation:

$$\int_{B} |V(Du) - V(Q)|^2 dx \leq c (\int_{2B} |V(Du) - V(Q)|^{2\theta} dx)^{\frac{1}{2\theta}}$$

Using difference quotient technique: $V(Du) \in W^{1,2}$ and

$$\int_{B} |DV(Du)|^2 dx \leq \frac{c}{R^2} \int_{2B} |V(Du)|^2 dx$$

Introduction

Uhlenbeck trick

Uhlenbeck trick

We use the approximated functionals $F_{\lambda} = \int_{\Omega} \phi_{\lambda}(|Dv|) dx$

 $\phi_{\lambda}(|Du_{\lambda}|)$ subsolution of a problem whose coefficients satisfy

1

 $|c_0|\xi|^2 \leq \sum_{kl} G^{kl}_\lambda(Q) \xi_k \xi_l \leq c_1 |\xi|^2$.II. $\sup_{B} \phi_{\lambda}(|Du_{\lambda}|) \leq c \int_{2B} \phi_{\lambda}(|Du_{\lambda}|) (DeGiorgi - Nash - Moser)$ $\sup_{B} \phi(|Du|) \leq c \int_{2B} \phi(|Du|) \quad \left((\lambda, Q) \to V_{\lambda}^{-1}(Q) \text{ is continuous} \right)$ $\int_{\frac{1}{2}B} |V(Du) - \langle V(Du) \rangle_{\frac{1}{2}B}|^2 \le c \left(\sup_{B} \phi(|Du|) - \sup_{\frac{1}{2}B} \phi(|Du|) \right)$

Excess decay estimate

Excess decay estimate

Using the Hölder continuity of ϕ " we get: $\forall \tau \in (0, 1) \exists \varepsilon_0(\tau) \in (0, 1)$ such that

 $\Phi(u, R) \leq \varepsilon_0 \sup_{B_{R/2}} \phi(|Du|) \Longrightarrow \Phi(u, \tau R) \leq c\tau^2 \Phi(u, R)$

$$\Phi(u,R) = \int_{B_R} |V(Du) - (V(Du))_R|^2 dx$$

How should we remove the "smallness " assumption? We prove an alternative using the weak Harnack inequality.

- Using a standard iteration tecnique, we prove that $\exists \alpha > 0 : \forall B \subset \Omega \quad \Phi(u, \rho) \leq C(\frac{\rho}{B})^{\alpha} \Phi(u, R) \quad \forall \rho < R$
- From Campanato characterization of Hölder continuous functions, we get V(Du) locally Hölder continuous;
- Using that V⁻¹ Hölder continuous, we conclude: Du locally Hölder continuous.

Excess decay estimate

Remark (D.Breit, A.Verde, B.S. 2011)

If φ satisfies

• Δ_2 -condition;

•
$$\widehat{\varepsilon} \frac{\varphi'(t)}{t} \leq \varphi''(t) \leq a(1+t^2)^{\frac{\omega}{2}} \frac{\varphi'(t)}{t}, \quad \omega > 0$$

• the Hölder continuity of $\varphi''(t)$,

then there exists $\sigma > 0$ such that $u \in C^{1,\sigma}(\Omega; \mathbb{R}^N)$.

Example

We can consider convex functions that oscillate like the following example in Marcellini-Papi :

$$arphi(t) = \left\{ egin{array}{cc} t^{p} &, t \leq au_{0}, \ t^{rac{p+q}{2} + rac{q-p}{2} \sin\log\log\log t}, t > au_{0}; \end{array}
ight.$$

where τ_0 is such that $\sin \log \log \log \tau_0 = -1$.

What happens if we remove the "radial structure"?

Hyp.: *f* smooth uniformly convex function with uniformly bounded second derivatives

Classical results: smooth minimizers, (Morrey, De Giorgi, Nash)

Counterexamples (Necas '77)

 $n > 2, N > 1 \Longrightarrow$ non smooth minimizers, but Lipschitz continuous .

Recent results, Sverak-Yan (2002)

Using "null Lagrangian" approach, they construct counterexamples showing that there exist regular variational integrals such that the minimizers must be:

- non-Lipschitz if $n \ge 3, N \ge 5$;
- unbounded if $n \ge 5, N \ge 14$.

Mooney, Savin 2015

Example of singular minimizer for n = 3 and m = 2.

- Asymptotically convex problems, (Chipot Evans):
- Elliptic sytems with ϕ -growth
- Quasiconvex problems

Given $H(\xi) = (1 + |\xi|^2)^{\frac{p}{2}}$ we say that *f* is *C*² asymptotically convex if

$$\forall \varepsilon > \mathbf{0}, \exists \gamma_{\varepsilon} > \mathbf{0} : |\frac{\partial^2 f}{\partial \xi^2}(\xi) - \frac{\partial^2 H}{\partial \xi^2}(\xi)| \le \varepsilon |\xi|^{p-2}$$

whenever $|\xi| > \gamma_{\varepsilon}$.

Question

Which kind of regularity can we expect for local minimizers of

$$F(u)=\int_{\Omega}f(Du)dx?$$

Local Lipschitz regularity

- Chipot-Evans '86 p = 2
- Giaquinta-Modica '86 $p \ge 2$
- Leone-Passarelli di Napoli-V. '07 1
- Raymond '91, Kristensen-Taheri '03, Dolzman-Kristensen '05,
- Dolzman-Kristensen-Zhang,
- Scheven-Schmidt '09
- Carozza-Passarelli-Schmidt-Verde '10

Main Theorem

$$F(u) = \int_{\Omega} f(Du) dx$$

•
$$f \in C^2(\mathbb{R}^{nN})$$

• $|D^2 f(\xi)| \le c\phi''(|\xi|), \forall \xi \in \mathbb{R}^{nN} \setminus \{0\}$
• $\lim_{|\xi|\to\infty} \frac{|D^2 f(\xi) - D^2 \phi(|\xi|)|}{\phi''(|\xi|)} = 0$
If $u \in W^{1,\phi}_{loc}(\Omega, \mathbb{R}^N)$ local minimizer for *F*, then *Du* is locally bounded.

$$\sup_{B} \phi(|Du|) \le c(1 + \int_{2B} \phi(|Du|) dx)$$

The proof is achieved comparing our minimizer with the minimizer of the model functional for which we have the excess decay estimate!

What about C^1 asymptotically convex problems? Counterexample of Dolzmann, Kristensen, Zhang:n = N = 2, p = 2

 $\int_B dist^2(\nabla u, SO(2)),$

 $B \subset \mathbb{R}^2$ unit disc. The quasiconvex envelope F is C^1 asymptotically convex; $F'(\xi) = 2(\xi - c(\xi))$, with c bounded Lipschitz. There exists a minimizer in $W_0^{1,2}(B, \mathbb{R}^2)$ with unbounded gradient near 0 (also minimizer for F): it is $\frac{1}{4}\bar{z} \log |z|^2 \in W^{1,BMO}$!

Scheven-Schmidt result:

f locally bounded Borel integrand + asymptotically regular

∜

 Ω can be decomposed into three disjoint sets:

- *H* is open *u* is $C^{1,\alpha}$, $\forall \alpha$;
- B_L $x \in B_L$ is a Lebesgue point and $|Du| \le L$;
- Σ is negligible set.

H and the interior of B_L are contained in the regular set, that is dense in Ω . But $S(u) \cap \partial B_L$ can have positive measure! It is a result of partial Lipschitz regularity.

For N = 1 or n = 2 they show everywhere regularity.

Elliptic systems of ϕ -growth

What about Elliptic systems of ϕ -growth? Consider a system:

$$divA(x,\nabla u) = 0$$

for a vector field $A: \Omega \times \mathbb{R}^{nN} \to \mathbb{R}^{nN}$ such that:

- A is Lipschitz continuous with respect to P $|A(x, P) - A(x, Q)| \le L\phi''(\mu + |P| + |Q|)|P - Q|$
- $\nabla_{N \times n} A$ is Hölder continuous with some exponent α for $|Q| < \frac{1}{2}|P|$

$$|\nabla_{N \times n} A(x, P + Q) - \nabla_{N \times n} A(x, P)| \le L\phi''(|P|) \left(\left| \frac{Q}{P} \right| \right)^{\alpha}$$

• A is degenerate monotone:

$$\langle \mathcal{A}(x,\mathcal{P}) - \mathcal{A}(x,\mathcal{Q}), \mathcal{P} - \mathcal{Q} \rangle \geq \nu \phi''(\mu + |\mathcal{P}| + |\mathcal{Q}|) |\mathcal{P} - \mathcal{Q}|^2$$

 A is Hölder continuous with respect to its first argument with exponent β ∈ (0, 1).

Question

Which kind of regularity we can expect for solutions of systems of $\phi\mbox{-}{\rm growth}$

 $divA(x, \nabla u) = 0?$

Partial regularity

Hölder continuity of the gradient in a set whose complement has Lebesgue measure zero.(Hausdorff dimension)

Non degenerate case

Partial regularity: The basic idea is to linearize the problem near the gradient average.

We have different methods to implement a local linearization scheme:

- Indirect method via blow up techniques: Morrey, Giusti-Miranda, Evans, Acerbi-Fusco, Hutchinson, Hamburger..
- A-harmonic approximation method: De Giorgi (minimal surfaces), Simon, Duzaar-Steffen (geometric measure theory), Duzaar-Mingione, Duzaar-Gastel-Grotowski, Duzaar-Grotowski-Kronz,...

Degenerate case

Partial regularity: When we linearize near the gradient average, it may happen that $(Du)_{x,r}$ is near the origin or even 0 so that the linearized problem loses the ellipticity! Idea for partial regularity:

- when *Du* is far from 0, then one can linearize as before;
- when Du is near 0, then one directly compares u with minimizers of the model case functional $\int_{\Omega} |Dv|^p dx$ via "p-harmonic approximation" (see notes of Lecture 3&4.)

A function $u \in W^{1,2}(\Omega)$ is weakly harmonic on Ω iff

$$\int_{\Omega} \nabla u \nabla \phi = \mathbf{0} \, \forall \phi \in \boldsymbol{C}^{\infty}_{\boldsymbol{o}}(\Omega)$$

Weyl's Theorem If u is weakly harmonic, then the L^2 class of u has a representative which is harmonic.

Harmonic Approximation Lemma

Let *B* a ball in \mathbb{R}^n . For each $\varepsilon > 0$ there is $\delta = \delta(n, \varepsilon)$ such that if $u \in W^{1,2}(B), \int_B |\nabla u|^2 \leq 1$ and

$$|\int_{B} \nabla u \nabla \phi| \leq \delta \sup |\nabla \phi|, \forall \phi \in C_{o}^{\infty}(B)$$

then there is a harmonic function *h* on *B* such that $\int_{B} |\nabla h|^2 \le 1$ and

$$\int_{B} |h-u|^2 \leq \varepsilon$$

In this context of more general growth we prove a ϕ -harmonic approximation that also in case of powers give a new approximation in terms of the gradients

p-harmonic approximation

For every $\varepsilon > 0$ and $\theta \in (0, 1)$, $\exists \delta = \delta(\varepsilon, \theta, \phi) > 0$ s.t. if $u \in W^{1,p}(B, \mathbb{R}^N)$ is almost *p*-harmonic i.e. $\forall \xi \in C_0^{\infty}(B, \mathbb{R}^N)$ $\left| \int_B |\nabla u|^{p-2} \langle \nabla u, \nabla \xi \rangle \, dx \right| \leq \delta \left(\int_B |\nabla u|^p \, dx + \|\nabla \xi\|_{\infty}^p \right),$

then the unique *p*-harmonic map *h* with h = u on ∂B satisfies $\left(\oint_{B} |V(\nabla u) - V(\nabla h)|^{2\theta} dx \right)^{\frac{1}{\theta}} < \varepsilon \oint_{B} |\nabla u|^{p} dx.$

The proof is based on a generalization of the Lipschitz approximation Lemma in the context of Orlicz spaces.

Main steps of the proof

Further directions

Harmonic type approximations

Lipschitz approximation Lemma

Ω bounded domain and $w ∈ W_0^{1,p}(Ω, \mathbb{R}^N)$. For every $m_0 ∈ \mathbb{N}$ and γ > 0 there exists $λ ∈ [γ, 2^{m_0} γ]$ such that the Lipschitz truncation $w_λ ∈ W_0^{1,∞}(Ω, \mathbb{R}^N)$ satisfies

- $\|\mathbf{W}_{\lambda}\|_{\infty} \leq \mathbf{C} \lambda$
- $\int_{\Omega} |\nabla w_{\lambda}|^{p} \chi_{\{w_{\lambda} \neq w\}} dx \leq c \int_{\Omega} \lambda^{p} \chi_{\{w_{\lambda} \neq w\}} dx$
- $\leq \frac{c}{m_0} \int_{\Omega} |\nabla w|^p dx$
- $\int_{\Omega} |\nabla w_{\lambda}|^{p} dx \leq c \int_{\Omega} |\nabla w|^{p} dx.$

Remark

Acerbi-Fusco Lemma in the power case $p \implies \|\nabla w_{\lambda}\chi_{\{w_{\lambda} \neq w\}}\|_{p} \le \lambda |\{w_{\lambda} \neq w\}|^{\frac{1}{p}} \le c \|w\|_{1,p} \le K$. So just boundedness of the above term!

Sketch of the *p*-harmonic approximation:

- Take *h* solution of the homogeneous problem in a ball *B* with *h* = *u* on ∂*B*;
- Let $\gamma > 0$ s.t. $\gamma^{p} = \int_{B} |\nabla u|^{p} dx$ and $\lambda \in [\gamma, 2^{m_{0}}\gamma]$ for suitable m_{0} . Take w = h u and w_{λ} s.t. $||w_{\lambda}||_{\infty} \leq c\lambda$ and $\int_{B} \lambda^{p} \chi_{\{w_{\lambda} \neq w\}} dx \leq \frac{\gamma^{p}}{m_{0}}$. We consider w_{λ} as test function in both problems (*almost p*-harmonic estimate and *p*-harmonic system);
- Monotonicity of the operator, Young's inequality and useful properties of w_λ.

Let us remark the main differences with respect to the result of Duzaar and Mingione.

Remark

- We use a direct approach without a contradiction argument. This allows us to show that the constants involved in the approximation only depend on ϕ .
- We are able to preserve the boundary values of our original function. In particular, u = h on ∂B .
- We show that *h* and *u* are close with respect to the gradients rather than just the functions.

Main steps of the proof

Harmonic type approximations

Systems with critical growth (*p*-harmonic maps)

$$\int_{\Omega} \frac{\phi'(|Du|)}{|Du|} Du D\eta \, dx = \int_{\Omega} G\eta \, dx \tag{1}$$

for all $\eta \in C_0^{\infty}(\Omega)$ where $G \in L^1(\Omega)$ satisfies for a.e. $x \in \Omega$
 $|G(x)| \le c\phi(|Du|)$ (2)

Hölder regularity

Suppose $c \ge 1$ is given. Then there exists $\delta(n, N, \phi, c) > 0$ such that if $u \in W^{1,\phi}(\Omega, \mathbb{R}^N)$ satisfies the system, a Caccioppoli inequality and

$$\phi^{-1}\left(\int_{B_R}\phi(|\nabla u|)\,dx\right)\leq rac{\delta}{R}$$

on some ball $B_R \subset \Omega$, then V(Du) is Hölder continuous on $B_{\frac{R}{2}}$ with exponent μ , for suitable μ depending on δ , ϕ , n, N, c.

Main steps of the proof

Further directions

Harmonic type approximations

Applications to "small solutions" (Hildebrandt, Widman, Giaquinta)

Example

If $||u||_{\infty} < c(C, \Delta_2) \Longrightarrow$ Caccioppoli inequality holds.

Principal steps

- smallness + Caccioppoli assumption $\implies u$ is almost ϕ -harmonic;
- φ-harmonic approximation+ excess decay estimate for the φ-harmonic map h ⇒ Morrey-type estimate for the gradient
- convex-hull property for the functional ⇒ u − h is continuous;
- test the system with u h and use again smallness and excess decay of h, we conclude.

Main steps of the proof

Harmonic type approximations

Differential forms (L.Beck)

$$d^*a(x,\omega) = 0$$
 and $d\omega = 0$, (3)

• Ω bounded open set in \mathbb{R}^n ;

- $\Lambda^{\ell}\Omega = \Lambda^{\ell}(T\Omega, \mathbb{R}^N)$ the vector bundle of differential ℓ -forms over the manifold Ω ;
- $a: \Omega \times \Lambda^{\ell} \to \Lambda^{\ell}\Omega$ of class $C^{0}(\Lambda^{\ell}\Omega, \Lambda^{\ell}\Omega) \cap C^{1}(\Lambda^{\ell}\Omega \setminus \{0\}, \Lambda^{\ell}\Omega)$, satisfying some *p*-growth, ellipticity and continuity assumptions;
- $\omega \in L^{p}(\Lambda^{\ell}\Omega) := L^{p}(\Omega, \Lambda^{\ell}\Omega), 1$

Uhlenbeck's result '77

Consider

Harmonic type approximations

$$a(\bar{\omega}) = g(|\bar{\omega}|)\bar{\omega}$$

for every $\bar{\omega} \in \Lambda^{\ell}$, where the function $g \colon \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the following continuity, ellipticity and growth conditions:

(G1) $t \mapsto g(t)$ is of class $C^{0}([0,\infty]) \cap C^{1}((0,\infty])$, (G2) $\nu t^{p-2} \leq g(t) \leq L t^{p-2}$

and

$$u t^{p-2} \leq g(t) + g'(t) t \leq L t^{p-2},$$

(G3) $\exists \beta_g \in (0, \min\{1, |p-2|\})$ such that

 $|g'(s) s - g'(t) t| \le L (|s|^2 + |t|^2)^{\frac{p-2-eta g}{2}} |s-t|^{eta g}.$

for all $s, t \in \mathbb{R}^+$, $p \ge 2$, and $0 < \nu \le L$.

Theorem (C^{1.a}-regularity) Uhlenbeck and Hamburger '92

Given a system of Uhlenbeck structure, there exists a constant $c \ge 1$ and an exponent $\gamma \in (0, 1)$ depending only on n, N, ℓ, p, L and ν such that the whenever $h \in L^{p}(\Lambda^{\ell}\Omega)$ is a weak solution of the system

 $d^*(g(|h|)h) = 0$ and dh = 0 in Ω ,

then, for every $B_R(x_0) \subset \Omega$ and any 0 < r < R there holds

$$\begin{split} \sup_{B_{R/2}(x_0)} |h|^p &\leq c \int_{B_R(x_0)} |h|^p, \\ \Phi(h;x_0,r) &\leq c \left(\frac{r}{R}\right)^{2\gamma} \Phi(h;x_0,R) \end{split}$$

where $\Phi(h; x_0, r)$ is the excess functional.

Principal steps

- generalization in the context of differential forms;(Gaffney's inequality,Hodge decomposition, Poincaré-type inequality, see Iwaniec-Scott-S. '99);
- generalization of the existing results concerning possibly degenerate problems (Duzaar Mingione '04 and '08);
- a unified and simplified proof of the partial regularity result for the sub- and the superquadratic case(Diening,S.,Verde).

What kind of regularity we can expect? Partial regularity

Main Theorem

Let $\omega \in L^{p}(\Lambda^{\ell}\Omega)$, $p \in (1, \infty)$, be a weak solution

\Downarrow

 ω is partially Hölder continuous .